Graphite flake self-retraction response based on potential seeking
نویسندگان
چکیده
The high elastic modulus and interlayer strengths of graphite flakes make them a durable solid superlubricant. Apart from this, they have configurable electrical properties, exhibit quantum Hall effects, and possess a myriad of useful photonic properties. The self-retraction behavior of graphite flakes can have significant impact on the creation of ordered stacks for various applications because any accidental or intentional displacement of the top flake over the stacks below may result in a misalignment of the carbon-carbon atomic arrangement which, in turn, can have influence over the electrical and photonic properties. It has also been revealed that there was a tendency of the displaced microflake to fail at times to return to its original starting position and orientation. Here, we elucidate this behavior by considering the influence of the interlayer potential forces based on minimal potential energy seeking. The maps of the parameters interrogated here provide the ability for precautions to be undertaken. They also potentially permit the creation of an array of microflake stacks in which the metastable states permit different information to be encoded by virtue of the differentiated photonic or electrical characteristics readable from each array site.
منابع مشابه
Diffusion and drift of graphene flake on graphite surface.
Diffusion and drift of a graphene flake on a graphite surface are analyzed. A potential energy relief of the graphene flake is computed using ab initio and empirical calculations. Based on the analysis of this relief, different mechanisms of diffusion and drift of the graphene flake on the graphite surface are considered. A new mechanism of diffusion and drift of the flake is proposed. Accordin...
متن کاملSociety of Tribologists and Lubrication Engineers
A multi-scale theoretical model is presented that is the first to offer quantitative agreement with experimental measurements of selfretraction and oscillation of bilayer graphene. The model integrates density-functional calculations of the energetics driving flake retraction and molecular-dynamics simulations capturing the dynamic response of laterally-offset rough surfaces. We demonstrate tha...
متن کاملInvestigation on Thermal Conductivity and AC Impedance of Graphite Suspension
Over the past decade, some groups have reported that nanofluids, which are liquids containing suspensions of nanoparticles, have substantially higher thermal conductivity than that of the base fluids. However, the reported high thermal conductivity sometimes cannot be reproduced. Theoretically, potential mechanisms leading to this enhancement are still under scrutiny. In this thesis, we present...
متن کاملInfluence of Shot Peening Parameters on Residual Stresses in Flake and Vermicular Cast Irons
Test samples of grey and compacted graphite cast irons with pearlitic matrix were shotpeened to different surface conditions using twelve different combinations of shot size, peening intensity and peening coverage percentage. Relatively high surface compressive residual stresses varying between 245 to 565 MPa were observed and the compressive residual stresses reached a depth between 280 μm and...
متن کاملAtomistic simulations of the sliding friction of graphene flakes
Using a tight-binding atomistic simulation, we simulate the recent atomic-force microscopy experiments probing the slipperiness of graphene flakes made slide against a graphite surface. Compared to previous theoretical models, where the flake was assumed to be geometrically perfect and rigid, while the substrate is represented by a static periodic potential, our fully-atomistic model includes q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012